Manufacturing Methods

Brazing

Brazed diamond saws are manufactured by welding Synthetic Diamond particles to the outside edge of the circular Saw blade.  All of the diamond particles are on the exterior cutting edge of the blade, with no metal-diamond mixture. Depending on the manufacturer's recommended blade application, brazed blades will cut a wide variety of material including Concrete, Masonry, Steel and Tiles.
Finer synthetic diamond grits will reduce the chipping of tile and burring of steel and provide a smoother finish. Larger diamond grits will provide a higher cutting speed, but will be more likely to cause chipping, burring, or cracking.

Sintering

Sintered metal-bonded diamond blades are the most common type of blade. These blades consist of a Steel core (the base is steel plate, unlike that of the wires used in Diamond Wire Saws) and Diamond Segments, which are made by combining synthetic diamond crystals with metal powder and then Sintering them. The diamond segments are also known as the "cutting teeth" of the blade.
The steel core can vary in design. Some cores have spaces (known as gullets) between segments to provide cooling and slurry removal, while others have a single continuous rim for smoother cutting. The type of core that can be used depends on the type of materials that the diamond blade is designed to cut.

Generally, there are three types of sintered metal-bonded diamond blades according to their manufacturing methods: wholly sintered diamond blades, silver brazed diamond blades and laser welded diamond blades.

A wholly sintered diamond blade is made by putting the steel core, together with the diamonds and the metal bond materials, into a mold and then sintering it in a sintering machine. Consequently, the diameter of wholly sintered diamond blades is not very large, normally not more than 400 mill (16 in). Because it is participating in the sintering process, the steel core cannot be quenched, so the hardness and strength of the core are not very high. This means that these types of diamond blade may deform in high-load and high-intensity cutting processes and can exhibit low cutting efficiency
Silver brazed and laser welded diamond blades do not have this weakness because their diamond segments and steel core are treated separately. The steel core can be quenched and processed with other heat treatments, so its hardness and strength can be high, meaning that the blade can be used in high-load and high-intensity cutting processes with high cutting efficiency and a smaller degree of deformation.

Silver brazed diamond blades' diamond segments are brazed to the steel core using a silver solder. These blades can only be used in wet cuttings. If they are used in dry cuttings, the silver solder may melt and the segments can break from the steel core and become a serious safety hazard. A laser melts and combines the metal of the diamond segment and the steel core creating a stronger weld, which can hold the segments even in high temperatures, meaning that laser welded diamond blades can be used to cut many types of stone without water cooling. However, when cutting very hard or abrasive materials, e.g., concrete containing reinforcing rebar, laser welded diamond blades should also be used with adequate water. Otherwise, it is possible for the diamond segment itself to break or the steel core below the segment to wear and break, creating serious safety hazards.